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Distribution of conductance for Anderson insulators: A theory with a single parameter
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We obtain an analytic expression for the full distribution of conductance for a strongly disordered three-
dimensional conductor within a perturbative approach based on transfer-matrix formulation. Our results con-
firm the numerical evidence that the log-normal limit of the distribution is not reached even in the deeply
insulating regime. We show that the variance of the logarithm of the conductance scales as a fractional power
of the mean, while the skewness changes sign as one approaches the Anderson metal-insulator transition from
the deeply insulating limit, all described as a function of a single parameter. The approach suggests a possible
single parameter description of the Anderson transition that takes into account the full nontrivial distribution of

conductance.
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Quantum fluctuations have been intensely studied in re-
cent years, but in many cases a fundamental understanding
of their effects on physical observables remain poorly under-
stood. In particular the effects of large mesoscopic fluctua-
tions on quantum phase transitions, both in interacting elec-
tron systems' and in disordered noninteracting models,” have
not been studied systematically. For a noninteracting system,
while the distribution P(g) of the dimensionless conductance
g in the metallic weak disorder limit is well understood,’
even a qualitative understanding of P(g) is lacking in the
strongly disordered insulating regime in three dimensions
(3Ds) where numerical data show large deviations* from an
expected log-normal distribution. The more fundamental
question of how this nontrivial distribution changes as one
decreases the disorder from the deeply insulating regime to-
ward the Anderson metal-insulator transition point has re-
mained largely unexplored. This is primarily due to the lack
of appropriate theoretical tools to consider such distribution
functions analytically. Conventional field theory framework,’
which relies on a small & expansion in 2+ ¢ dimensions gives
results that do not agree even qualitatively, in the € — 1 limit,
with numerical results in 3D.°

In this work, we obtain the full conductance distribution
in 3D in the strong disorder regime analytically within a
perturbative approach, and show that the results are consis-
tent with available numerical data. Our model involves a
single disorder parameter I'=¢/4L, where ¢ is the localiza-
tion length and L, is the length of the conductor. A second
parameter y=§&/8L, where L is the cross-sectional dimen-
sion, becomes independent only if arbitrary geometrical
shapes are considered. We show first of all that the interac-
tion between different channels of a conductor in 3D remains
important even in the deeply insulating regime; the result is
that the 3D distribution is never log normal. Instead, we find
that the variance of the logarithm of conductance scales ap-
proximately as 2/3rd power of the mean.” In addition, we
also explicitly evaluate the third cumulant x;={((Ing
—(In g))*) which describes the asymmetry of the distribution.
We find that in the deeply insulating regime k3 is positive
(longer tails toward larger conductances). It then decreases
with decreasing disorder according to w3~ (-In g), going
through zero well before the Anderson metal-insulator tran-
sition point.® As one decreases the disorder further toward
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the critical point, k3 becomes negative, describing increasing
asymmetry in the opposite direction.” We emphasize that all
of this is described as a function of a single parameter that
fixes the mean value. Our method therefore allows us to
explore in quantitative detail how the conductance distribu-
tion changes as one approaches the Anderson transition point
starting from the deeply insulating regime, and how it can
still be described analytically within a one-parameter theory.

Our formulation is based on the transfer-matrix frame-
work developed originally for transport in quasi-one dimen-
sion (Q1D) where the transverse length of a conducting wire
is less than the localization length. In Q1D, the Dorokhov-
Mello-Pereyra-Kumar (DMPK) equation'” has been enor-
mously successful in describing the details of the distribution
of the transmission eigenvalues.!! Exploiting the Landauer
formula'? to connect the distribution of g with the distribu-
tion of the transmission eigenvalues, the DMPK equation has
been used to obtain a variety of features in the distribution of
conductances in Q1D.!3 A generalization of the Q1D DMPK
equation, claimed to be valid in 3D, has been proposed in
Ref. 14. By solving this so-called Generalized DMPK (GD-
MPK) equation numerically and comparing the results with
those from direct numerical solution of the tight-binding
Anderson model, it has recently been shown!® that the GD-
MPK not only incorporates the effects of dimensionality cor-
rectly, but that it also describes the full distribution of the
transmission levels quantitatively in the insulating as well as
near the critical regime in 3D. However, analytic solutions of
the equation in the strongly disordered regime have been
obtained only within a very approximate saddle-point
scheme, where the interaction between the transmission ei-
genvalues are entirely ignored.'® These approximate solu-
tions do show deviations from the Q1D behavior in the right
direction, but they fail to describe correctly how e.g., the
variance or the skewness of the distribution changes with
disorder.

Here we solve the GDMPK equation analytically, includ-
ing the interaction between the eigenvalues, within a pertur-
bative approach. We find that the density of the transmission
eigenvalues in the insulating regime is a constant, with an
exponential gap at the origin that increases with increasing
disorder. This is fundamentally different from the approxi-
mate solutions where interaction between eigenvalues are ne-
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glected. The resulting analytic expression for the full P(In g)
as a function of disorder now agrees quantitatively with
available numerical data. The results suggest a possible
single parameter description of the Anderson transition start-
ing from the insulating side and taking into account the full
distribution of conductances even when the average (or the
most probable value) of the conductance is no longer a
meaningful representation of a highly nontrivial asymmetric
distribution.

For an N-channel disordered conductor of fixed cross sec-
tion L2, the GDMPK equation'* describes the evolution with
length L, of the joint probability distribution p; (x) of the N
transmission eigenvalues X, )

ap(x t) 1 d
—Ky| —+— t
ot 21‘ Ix; ”[&x, ax,}p(x )

O=- 2 Yl_] lnlf(-xz’x )| - E 1n|Slnh 2x (1)

i<j

with the initial condition p(x,7=0)=8(x), where r=L,/l with
[ being the mean-free path, f(x;,x;)=sinh® x;—sinh” x; and
we have kept A=1 as a free parameter for later convenience.
Here y,j—ZK i/ K, where K;; is a phenomenological matrix
defined in terms of certain elgenvector correlations that can
be explicitly evaluated numerically. The Q1D DMPK equa-
tion is recovered when ;=1 (we only consider orthogonal
symmetry). In Ref. 15 it was shown that only two param-
eters, Ky, and K, are enough to model the entire matrix K;;
in the insulating as well as the critical regimes, as proposed
in Ref. 16. Disorder is then characterized by the parameter
I'=Il/K||L,. In the insulating side, one can interpret &
=41/K,; as the localization length, so I'=£/4L_. The other
parameter y;, = y=§&/8L, so that I'/ y=2L/L, depends on ge-
ometry. The entire distribution, for a cubic system, is there-
fore characterized by a single disorder parameter I' (with y
=I'/2).

We note that it is through the L dependence of the eigen-
vector correlations K, and K, that the GDMPK ‘knows’
about the dimensionality of the system. In 3D, Kj;
~1/L%1/L?) in the insulating (metallic) regime; the quan-
tity K;;=lim; ... K;,(L) is zero in the metallic regime as
well as at the critical point, but is finite for insulators.'® In
2D on the other hand, K, is always finite. Thus the particu-
lar L dependence of K;;, and therefore of our parameter v,
not only reflects the proper dimensionality, but also contains
information about the critical point.

Once an analytic solution of the GDMPK equation for
p(x) is available, the full distribution of conductances P(g)
can be obtained via the Landauer formula>!?

N
P(g) j 11 dx,p(x) 5<g - E sech® xi). (2)

We can therefore expect that Eq. (1) can be used as the
starting point for studying the distribution of conductances at
large disorder. Of course the DMPK itself breaks down for
&£<<[; however this happens far from the transition region and
we do not consider such extreme disorder.
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We first briefly outline our method used to solve Eq. (1) in
the insulating regime. Following Ref. 18 we use a factoriza-
tion in terms of {=e 2,

p(xvt) -

|}\/2

1 £ (. x))] /ZH |sinh 2x;
y—0i<; |f(yi’yj)|y/2 |sinh 2y,{*?

The GDMPK transforms into an equation for the N-particle
Greens function Gy: —dGy/ dt=HGy, with

lw @& MA-2) 1
H=—_~2—2+(—~)T
2y ox; 2% sinh” 2x;
-2 1 1
QA2 + - )

4y S 51nh2(x,~—xj) 51nh2(xl~+xj)

where y=¢/4l. The initial condition is G(x;t=0]y)
=$Eﬁ(y) S(x—y) where 7(y) refer to a symmetrized permu-
tation. This maps the problem onto a set of N interacting
bosons evolving in imaginary time in 1D with delta function
initial conditions."”

In the strongly disordered limit the interaction strength
y<<1, and we exploit this small parameter to develop a per-
turbation theory to evaluate the nonequilibrium Greens func-
tion using standard Keldysh techniques.’® However, the
small y singular behavior in the denominator of Eq. (3) de-
mands ~{(y) in the small y limit
in order to recover a well-defined p. To extract this nonana-
lytic behavior of Gy from the diagrammatic expansion, we
must sum the expansion in a particular way. First we treat

A=(\-2) in Eq. (4) as a small parameter in which we will
later set A=1. This is justified because the short-range single-
particle potential primarily serves to provide a boundary con-
dition at the origin and its actual strength turns out to be
unimportant. Next we expand the Green’s function in a Tay-

lor series in both y and . Upon reorganizing the Taylor-
series expansion of Gy into an exponential series, we can
factor out from the series expansion the unperturbed
N-particle Greens function, the exact single-particle Green’s
function G (i) [defined through Eq. (4) with y=0] and exact
two-particle Green’s function G,(i,j) (defined through Egq.

(4) with A=0). Keeping just these terms, and neglecting
those terms remaining in the series-expansion results in our
“first order” approximation to the full Gy,

G,(i) 7 Galin)
G(t ),13, GS(ij)

where the superscript O refers to the unperturbed solution.
These turn out to be the dominant terms for all values of x, y,
and in particular they reproduce the nonanalytic behavior
aforementioned. Note that the approximation is ‘first order’
in the sense that the terms neglected in the series are all of
order 'y2 or higher; all terms of order y are kept, and some of
the terms are summed up to infinite order in . The approxi-
mation turns out to be quite good even close to the Anderson
transition where 7y remains smaller than unity, but clearly it

Gy(1) = Gt H (5)
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FIG. 1. (Color online) Density of the transmission eigenvalues
for two values of disorder, I'=0.014 (solid red line) and T
=0.0285 (dashed blue line). The exponential gap at the origin in-
creases with increasing disorder (decreasing I').

can be improved systematically by repeating the above pro-
cedure for higher orders in 7.

In order to obtain explicit results, we evaluate G,(i) and
G,(i,j) in the limit y<<1:

)
—— =x7(2
GY(xs1ly) ")
G (x1,X231]y1,Y2)
=T (x;+x)T (|x; —x
G(Z)(XI’XZ’I; y2) 7( l 2) 7(| ] 2|)

X1(y;+y2)7(|y; = yal) (6)
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where 7(z) =tanh”? 7 and

Y ——crfc’ (
\2r

T,(x) = ll -
Here erfc’(x)=(\w/ 2)exzerfc(x) where erfc(x) is the
complementary error function. As a first check, we have veri-
fied that our solution for the distribution of the transmission
levels obtained from Eq. (3) agrees with exact solutions
known in the QID limit!® for the special values of y=1, 2
and 4, for both small and large x where simple analytic ex-
pressions are available. In order to solve for the distribution
of conductances using Eq. (2), we consider the free energy of
N interacting particles on a line. First of all, we obtain the
density of the eigenvalues o(x) as a function of the disorder
parameter I,

g do_,
T =X. (8)
o 0'\2yo' —4T In[o’e/4]

The small and large x behavior are given by o(x)
~ T o fop x<x,,, and a(x)%T for x>x,,. Here
~[1/2F+1] and I'"=~[T'-2I'?]. Note that T<1 in the

1nsulat1ng regime. Figure 1 shows the density according to

Eq. (8) for two different values of I", with exponential gap at

the origin that increases with increasing disorder. In contrast,

the density in the metallic regime is also constant, but start-
ing at the origin.!! Thus our result suggests that the opening

of a gap in the eigenvalue spectrum could be considered as a

signature of the metal-insulator Anderson transition.

The conductance in the strongly disordered regime y<<1
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FIG. 2. (Color online) P(In g) in the insulating regime for three
values of disorder, I'=0.014 (solid red line), I'=0.0285 (dashed
blue line), and I'=0.051 (dotted green line) corresponding to
(In g)=-39.4, (In gy=—15.8, and (In g)=-8.9, respectively. The nu-
merical data points are from Ref. 21 for the same values of (In g).

is dominated by the smallest eigenvalue x;, although in con-
trast to Q1D it remains highly interacting. In this regime the
distribution can be expressed in a simple form,

1 4
P(In g) :exp[—f(zlng)},

[
r

F) = () - ‘”—erfc[oc ] 9)
Bey\I’

where v(x)=[Tx*>~In x—]zln sinh 2x]. Figure 2 shows plots
for P(In g) obtained from Eq. (9) for three values of disorder,
compared with numerical data obtained from solving the
tight-binding Anderson model. In order to compare the re-
sults in more detail, we plot in Fig. 3 the variance o, of In g,
which is consistent with a power-law 2/3rd.” Figure 4 shows
the third cumulant «3 which behaves as k3~ (-In g), and in
the inset we plot the corresponding skewness y= K3/0'3/2,
which seems to saturate at a value ~0.8. Note that the skew-
ness changes sign around (—In g) =5, which is still far from
the Anderson transition which occurs® around (~In g )~ 1.3.
Thus the distribution changes its shape from a large positive
asymmetry to a negative one that increases as the disorder is
decreased toward the critical point.

How close to the critical point can we approach with our
present formulation? It turns out that once the skewness be-
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FIG. 3. (Color online) Variance of In g plotted as a function of
(~In g)*3. The points are calculated from Eq. (9), and the line is a
fit.
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FIG. 4. (Color online) The third cumulant 3 as a function of
(~In g). The inset shows the corresponding skewness y. Note that y
(or k3) changes sign at (—In g)=5. The Anderson transition occurs
at (-In g)~1.3.

comes negative, the contributions to the conductance from
eigenvalues other than the smallest one become important.
Nevertheless, the value of the variance at the critical point
(~In g) is 1.64, close to 1.09 obtained from numerical data.®
This suggests that it should be possible to improve the cal-
culations systematically to study the conductance distribu-
tion at the critical point by increasing the number of eigen-
values included in the calculation of the conductance
distribution.

In summary, we have developed a perturbative approach
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that allowed us to obtain, from a transfer-matrix formulation,
the full distribution of conductances in the insulating regime
of a 3D disordered conductor. The solution takes into ac-
count the interaction between the transmission eigenvalues
that had been ignored in the past. The formulation involves a
phenomenological matrix characterizing eigenvector correla-
tions; analyzing the properties of this matrix numerically al-
lowed us to consider a simplified model with two indepen-
dent matrix elements only. The distribution is then obtained
as a function of a single disorder parameter that fixes the
mean value (In g), even though P(In g) changes its shape
from a positive to a negative skewness as the disorder is
decreased from the deep insulating regime toward the critical
Anderson transition point. The results agree with recent nu-
merical simulations of the full distribution. With current fab-
rication technology, it should be possible to verify the pre-
dictions experimentally. While the method is developed for
the insulating phase only, it also leads to a possible charac-
terization of the Anderson transition in terms of the opening
of a gap in the spectrum of the transmission eigenvalues. By
systematically improving the approximations, the method
could therefore be used to study the qualitative features of
the critical distribution near the Anderson transition point.
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